

Overview

Aims

The client company is a major manufacturer of
frozen processed food prepared with adherence to
the highest-quality standards. It ranks among the US
Top 100 food manufacturers. The company offers an
extensive product line with over 1500 products on
its list.

The company’s ERP system was developed over 30
years ago using COBOL. An in-house development
team has been maintaining it since launch. The
developers’ average age was 60+ years by the time
the client contacted us. However, their age was not
the issue: a complete lack of any project
documentation was.

The client approached IT Craft 7 years ago with the
idea of revamping their old system. This became a
successful collaboration both in system redesign
and maintenance.

The client had a strong, flourishing business. But the business depended heavily
on reliable work of an outdated ERP system.

The client’s goal was to renovate the ERP system and add new capabilities:

Both parties agreed the best solution was a gradual migration. Replace
sub-programs of the COBOL system with modules of a new system one after
another.

The business owners knew they needed a system available from any
mobile device. The old COBOL system could not provide enough
capability.

The client and IT Craft agreed that simultaneous maintenance of two
systems would be impractical. Employees’ time outlay would be too
much.

Also, maintenance of the COBOL system was expensive.

Still, the business owners could not simply throw the COBOL system
away without an immediate replacement. The entire enterprise could
not stop for even a minute.

2

Challenges
The development team immediately faced the following challenges:

Size of the system

The enterprise operated a tightly
coupled, COBOL-based system. It
contained myriad interconnected
sub-programs to cover all internal
process requirements and
document flow.

Obsolescence

Both user interface and system
capabilities were outdated long
ago. All employees kept using the
outdated system daily..

Costs of any downtime

The entire enterprise would grind
to a standstill if the system went
down for even a couple of minutes
during work time.

Large to-do lists

The number of project stakeholders
was huge. Their needs varied. The
development team transmitted old
logic to the new codebase and
added new features. Lists of
requests for improvements and
add-ons were massive after every
launch.

Technical dept

The system contained an
immense technical debt. This
debt had been accumulating for
the full 30 years of its existence.
For example, the system had a
large amount of unused
sub-programs, failed features,
and errors. Employees had built
workarounds to handle errors
and discrepancies.

3

Lack of structured
requirements

Unfortunately, none of the
employees knew the business
process from front to back. They
could describe only their direct
interactions with the system.
Employees used the system to
perform daily routines without
knowing the underlying logic. As a
result, they could not provide
details on system requirements.
Nonetheless, they needed a new
system to behave identically to this
one.

Dearth of communication
between client’s
departments.

Sometimes, different company
departments had different views
and preferences. This led to
multiple iterations of system
requirements. Some of the changes
were done even after the
development stage was completed.

Lack of motivation

Employees had nothing to gain by
helping. Some of them even
considered their jobs threatened
because of anticipated business
process automation.

No documentation

Source code was the system’s only
knowledge base.

4

Conflict of interests

Conflict of interests arose between
in-house COBOL developers and
the outsourcing development team.
It took time until the in-house team
was ready to cooperate.

Path from redesign of
architecture to replacement
The first action was to make changes to data storage to ensure sustainable progress
in later steps. The development team:

 transferred data storage from file system to database (opting for PostgreSQL).

 started using the same database after data transfer.

When both old and new systems were connected to the same database, no data
could be lost. Hence, the development team could do its work in a logical,
step-by-step manner.

5

Discovery and decomposition

Development team:

1 2

3 4

divided the entire system into
subsystems, each having been
used by different departments

within the company

conducted interviews with
stakeholders to figure out their

real needs

focused on one functionality of
the system at a time

did reverse engineering of
sub-programs responsible for

each functionality in the current
COBOL system

Redesign and redevelopment

The development team prepared technical tasks and mockups of the future
sub-project. They based these on the outcome of reverse engineering and on the
stakeholders’ requests. It was crucial to develop beyond similar functionality. The
team designed features that users had required for a long time but had never been
implemented in the old COBOL system.

6

After stakeholders’ project approval, the team started development.

It is crucial to listen to stakeholders’ recommendations and design an intuitive system.
This creates additional cases. For example, employees had devised best practices and
habits to optimize time spent working with the system. They got used to:

 certain hotkeys

 sequences of data entering (not always logical but rather deep-rooted)

 layout of certain items in certain, anticipated places

This helped break the barrier of rejecting innovations. Users easily found the right
things in the right places, so their comfort level working with the new system was
high.

Migration and replacement

User Acceptance Testing, delivery and approval of project, and staff training
consumed a significant amount of time. This happens in any software
development project which requires multiple stakeholders’ approval of
requirements.

After the functionality went live, staff training started. At this stage, both old and
new functionality were available simultaneously. Users compared both systems
and analyzed results.

To avoid cost increase, the developers had to keep time to a minimum when both
old and new systems were working in parallel. For the same reason, the
development team ensured only direct compatibility. The new system performed
the same activities as the old system with additional, new features required by
stakeholders.

The old COBOL system did not support the new features. Because of this, both
developers and stakeholders had to always remember that simultaneous use of
both systems could lead to indiscernible technical limitations. For example:

 User creates a new order in the new system.

 He or she edits this order using the old system.

 User selects a new option. The new system has this option but the old system
does not. Because the old system lacks this new option, it might not save
“unknown data” when updating the order even when the data is essential.

However, as soon as users ensured the new system could fully replace the old
sub-programs in the COBOL system, the development team switched off the old
COBOL functionality. Users continued working only with new modules.

7

Results

After the switch to the new system was completed, the development team
continued working on the system to help cover all business processes, including
billing, tracking, warehouse, etc.

The tactics development team used on the project made it possible to:

This way, the development team incrementally transferred the entire enterprise to
a new system.

streamline workflow add remote work
with the system

automate processes
that required

previously manual
operations

www.itechcraft.com

site@itechcraft.com

USA: +1 469 730 0216

Germany: +49 302 067 3534

Estonia: +372 634 7354

